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Important ecological research

Station for Measuring Ecosystem surface- Atmosphere Relations

guestions at SMEAR I SMEARII

Vegetation Atmosphere
Gas exchange Gas concentrations

* How ecosystems are affected by climate Foreon AL e
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Contributes to :
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* How ecosystems influence climate
* Cycling carbon, nitrogen and water
* Exchanging reactive compounds and aerosols
* Energy balance
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Fundamental concepts directing the ecosystem

measurements at SMEAR stations

Mass, energy and momentum are being conserved

CHALLENGE: QUANTIFY THE CLIMATE-
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INTERLINKED PROCESSES AND FEEDBACKS
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Ecosystem processes approach

Continuous, high-resolution measurements of
ecosystem properties and functions related to

CO, flux through stomata:

biogeochemical cycles Transpiration: A=g(Ce=C)

E=16gd !P Carbon fixation in photosynthesis:
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Quantitative and comprehensive physical, Stomatal control =078’ T Iis
ecological and physiological understanding Xylem sap flow: ~—
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Sugar utilization in sinks:

* process description and understanding

° Iong term dynamics Water uptake from soil:
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Small scale measurements on different
ecosystem compartments

Continuous comprehensive observations
Station for Measuring Ecosystem surface- Atmosphere Relations

SMEARII

Vegetation < Atmosphere

Gas exchange Gas concentrations
Transport | Gas & Heat fluxes
Growth : Aerosols
Structure ' Irradiance
I ‘ Structure
l Reactive Heat H20

gases

Freshwater
Physical & Biological
processes

Forest Lake Peatland

Over 1200 different variables
Flagship site for integration: combines IPCC with climate-relevant processes
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Gas exchange measurements with stem
enclosures

* Tree stems release CO, (respire) and H,O (transpire) depending on
the prevailing environmental factors. They also exchage VOCs with
the atmosphere.

* The CO, and H,0 exchange of stems is monitored continuously

with enclosures tightened around stems and connected to a gas
exchange measurement system including gas analysers.

Respiration pg m-2 s-1

Lintunen et al
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The CO, exchange of
upper canopy pine
stem and ambient air
temperature during
two days in summer
2015. The higher
temperature, the
higher stem
respiration.




Gas exchange measurements with
shoot enclosures

. Gas concentration dynamics during closure 5
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* Photosynthetic capacity as well as other metabolic activity 3 ' Aalto, Back et al
is seasonally controlled by environmental factors, such as ;
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temperature and light (Kolari et al. 2014). ® Time (hours)
Hari & Makel3 2003, Tree Physiol, 23: 145-155. CO2 exchange during two days in summe'r 2001. Filled circles represent
. ! the measured CO2 exchange rate, open circles represent a
Kolari et al. 2014. Front Plant Sci, 5. . ) et e
photosynthesis model based on optimum stomatal control (Makela et
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VOC emission measurements with shoot enclosures
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* Emissions of several VOCs, such as monoterpenes, methanol and
acetaldehyde, show strong seasonal pattern, controlled both
prevailing environmental conditions and seasonal effects such as
new biomass growth, photosynthesis recovery or senescense (Aalto
et al. 2014, 2015).

~Monoterpenes

0.3 -~Methanol
Acetaldehyde

Emission rate
ngg's!
o
N

An example of continuous VOC
emission rate measured from
Scots pine shoot.
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Aalto et al. 2014. Biogeosci, 11: 1331-1344. Aaltonen et al. 2013. Plant Soil, 369: 241-256.
Aalto et al. 2015. Plant Cell Environ, 38: 2299-2312. Vanhatalo et al. 2015. Biogeosci, 12: 5353-5363.
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CO, emission (g CO, m2h")

Automated measurements With SO"
enclosures

Forest floor is a key source of CO, in boreal forests, and climate change will
likely modify the seasonal variation and strength of the soil respiration, as well
as affect other sources of trace gases from soil.

Understanding processes maintaining the sources plays central role in
predicting the future trace gas fluxes from soil.
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Point dendrometers

* xylem and whole stem water relations
e cambial growth
* changes in osmotic concentration of living cells in the xylem

Point dendrometers in SMEAR Il

Diurnal dynamics Annual dynamics
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Sap flow

e for measuring xylem sap flow and tree water use dynamics
* Nighttime: swelling, Daytime: shrinking of stems

Diurnal dynamics: Annual dynamics:
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* Resin pressure over the growing

season positively connected to SWP
o thermal expansion of resin and
changes in bubble volume due to
changes in gas solubility

e T main driver at the diurnal scale
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Rissanen et al
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Monoterpene concentration (ug m'3)

19/11/2021 Mdki et al

VOC PRODUCTION IN BOREAL FOREST SOIL

T T T
Bl April BlMay B June[  JJuly[  |August

L.

H horizon A horizon B horizon C horizon

Concentrations were highest in organic layer, containing fresh
monoterpene-rich litter from trees. sampling
Biological processes i.e. litter decomposition produces highest

monoterpene concentrations during fall.

H horizon

A horizon



Long-Term leaf-level (PAM) Fluorescence Measurements

Portable pulse amplitute modulated (PAM)
fluorometer systems can be used to estimate the
efficiency of photosynthesis and its temporal dynamics
using the quantum yield of photosystem II.

Porcar-Castell et al

Date Porcar-Castell A 2011. Physiologia Plantarum 143:
139-153. 2011




Stand scale measurements aggregating the
small scale observations

Continuous comprehensive observations
Station for Measuring Ecosystem surface- Atmosphere Relations

SMEARII

Vegetation g Atmosphere

Gas exchange Gas concentrations
Transport i Gas & Heat fluxes
Growth e Aerosols
Structure ' Irradiance
I Structure
[ Reactive Heat H20

gases

O
Freshwater
Physical & Blologlcal
processes

Forest | Lake Peatland

Over 1200 different variables

Flagship site for integration: combines IPCC with climate-relevant processes
Contributes to :
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relative emission contents
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MONOTERPENES:
chemodiversity in pine forest

Pinene trees Intermediate trees Carene trees

Béick et al (2012) Biogeosciences 9: 689—702

¥ minor
compounds
W }-pinene

W Q-pinene

3
B A -carene



Atmospheric chemistry affected by
chemodiversity

m (-)-a-pinene @ (+)-a-pinene - PAR

600 - - 2.50
500 -
- 2.00
(+)-a-pinene (—)-a-pinene 0o | A
‘{'! ¢ - 1.50
300 - §§:’:‘:
* The enantiomers can have very . A e
. . . .’...:'::
'k: * oo
dlffer.er.mt. emission patterns and e .
reactivities 100 g.ﬁe,ié :.-.ﬁ," ié
. . ey 21 by
* Probably related to their roles in 50 |
0 ‘ ‘ 0.00

protection against herbivores?

19/11/2021 Yassaa et al 2012



GPP [mol m2s™]

-30

COS is taken up by plants via same pathway as CO, during photosynthesis

COS may be used as a proxy for gross primary productivity GPP

(photosynthesis)

_ Feos [CO,]
LRU [COS]

LRU = Leaf-scale Relative Uptake

GPP

Ecosystem and branch COS and CO, fluxes follow the same diurnal cycle
Offset in observed GPP could be explained by negative soil COS fluxes or
incomplete closure of stomata during nighttime

Eddy Covariance
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Estimating canopy properties with drones

—T
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Top-down: Atmospheric concentrations

* Tower profiles 0.10-

e Concentrations

* Flux methods (EC, disjunct EC, gradient)
* Emission or deposition

Methanol flux (ugm?2s ")
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Above Canopy Spectral Measurements

Reflectance-based Vegetation Indices are indicators of
canopy and understory growth and phenology.
Measurements can also be used to validate satellite data.
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Albedo
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0.1

Albedo in a boreal forest: wintertime is important
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Other greenhouse gases

Continuous comprehensive observations
Station for Measuring Ecosystem surface- Atmosphere Relations

SMEARII

Vegetation i Atmosphere

Gas exchange ) Gas concentratlons
Transport | Gas & Heat fluxes
Growth 4 Aerosols
Structure ' Irradiance
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O
Freshwater
Physical & Biological
processes

Forest Iske Peatland

Over 1200 different variables

Flagship site for integration: combines IPCC with climate-relevant processes
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CH, flux from
peatland

* Weak diel variability, plot
shows increase in CH,
efflux with peat warming
up during 3 example days

* Strong annual cycle

* peat temperature
* water table depth
* vegetation productivity

* The site is source of CH,

19/11/2021 Kolari et al
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Human impact on ecosystems



Forest management affects the C fluxes

3

Small trees around the measurement station were removed in 2019
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The main thinning was conducted in Jan-Feb 2020.
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Totally ca. 40% of basal area was removed.

EC fluxes have been monitored at 2.4 m and 27 m above the ground.

* The EC set up at 27 m provide info at ecosystem level
* The EC set up 2.4 m provide info about ground vegetation and soil.

N

EC setups

- L
- —

Removed trunks (March 2020) Subcanopy EC setup after thinning (March 2020).
Trunks with diameter less than 6 cm left in the field.

Toprak Aslan et al



Effect of forest management on tree
ohysiology and tree-soil interactions

Thinning = soil moisture content increases &
more light penetrates the canopy etc.

— affects tree physiology & growth and soil
processes

— affects forest carbon balance
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De Alzamora et al




CARBON budget

Needle respiration
300g Cm™2

~

The net carbon

sequestration
200-250g Cm=2atl

Needle photosynthesis
1100gCm™

Soil carbon efflux

600 g C m™2
Wood respiration |
100 g C m2 { \
: Root respiration Decomposition of
Photosynthesis soil organic matter
100 g C m>2 Litter production
100 g Cm™
Respiration

Root exudates
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100-200 g C m™

Courtesy: Pasi Kolari




NITROGEN budget

Processes [kg ha™*a] - -
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BVOC budget

" 60-95%

K.

Precipitation (RH,

Qoi/ water content...)

lrradiation |

Trees (foliage,
branches, stem)
Temperature
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/ Ground
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= Trunk emissions
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