

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

SMEAR – atmospheric composition measurements (Part 1)

18.11. 2021

(remote)

Prof. Tuukka Petäjä Institute for Atmospheric and Earth System Research (INAR) University of Helsinki, Finland

tuukka.petaja@helsinki.fi

Flagship station SMEAR II

N 61° 50.845', E 24° 17.686', altitude 180 m a.s.l.

https://www.cdc.gov/flu/resource-center/freeresources/graphics/images.htm, http://solutionsdesignedforhealthcare.com/rhinovirus, https://phil.cdc.gov/Details.aspx?pid=23312, https://pdb101.rcsb.org/motm/132

Linsey Marr, Virginia Tech, May 2020

Atmospheric new particle formation and growth events

Composition & concentration of:

- precursor gases
- initial clusters
- gases responsible for the subsequent growth

- Kulmala et al. (Boreal Environ Res) based on 18 years of SMEAR II data from Hyytiälä
- Paasonen et al. (Nature Geosci) based on global aerosol data and cloud albedo parameterization, feedback strength varies from location to location. The highest gain in clean boreal environments.

Atmospheric nucleation / clustering processes

Kulmala et al., Science, 2013

Problem: how to measure new particle formation?

Discovering the world below 3 nm

New technologies for reaching the sizes of nucleating clusters

A large source of low-volatility secondary organic aerosol

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

Ehn et al. (2014) Nature

Riccobono et al. (2014) Science

Reviews in Geophysics

Recent advances in understanding secondary organic aerosols: implications for global climate forcing

- Biogenic emissions, SOA formation (mass and number)
- LVOC and ELVOC in SOA growth
- Particle phase state
- Biomass burning SOA
- Laboratory systems
- SOA interactions with clouds
- Optical properties of SOA

Mace Head: coastal and continental nucleation.

Mass defect plot from CI-APi-TOF (neutral clusters) during coastal event. Nucleation due to iodine oxides

Molecular-scale evidence of aerosol particle formation via sequential addition of HIO₃

Mikko Sipilä¹, Nina Sarnela¹, Tuija Jokinen¹, Henning Henschel¹, Heikki Junninen¹, Jenni Kontkanen¹, Stefanie Richters², Juha Kangasluoma¹, Alessandro Franchin¹, Otso Peräkylä¹, Matti P. Rissanen¹, Mikael Ehn¹, Hanna Vehkamäkt¹, Theo Kurten³, Torsten Berndt², Tuukka Petäjä¹, Douglas Worsnop^{1,4,5,6}, Darius Ceburnis⁷, Veli-Matti Kerminen¹, Markku Kulmala¹ & Colin O'Dowd⁷

LETTER

LETTER

doi:10.1038/nature19819

Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

Jian Wang¹, Radovan Krejci², Scott Giangrande¹, Chongai Kuang¹, Henrique M. J. Barbosa³, Joel Brito³, Samara Carbone³, Xuguang Chi^{4,5}, Jennifer Comstock⁶, Florian Ditas⁴, Jost Lavric⁷, Hanna E. Manninen⁸, Fan Mei⁶, Daniel Moran–Zuloaga⁴, Christopher Pöhlker⁴, Mira L. Pöhlker⁴, Jorge Saturno⁴, Beat Schmid⁶, Rodrigo A. F. Souza⁹, Stephen R. Springston¹, Jason M. Tomlinson⁶, Tami Toto¹, David Walter⁴, Daniela Wimmer⁸, James N. Smith¹⁰, Markku Kulmala⁸, Luiz A. T. Machado¹¹, Paulo Artaxo³, Meinrat O. Andreae^{4,12}, Tuukka Petäjä⁸ & Scot T. Martin¹³

CLOUD project in CERN Kirkby et al., 2011, Nature

• Mass spectrometric measurements of nucleating ion clusters

HSO, -(H, SO,)

1,000

where m

Airmodus products

ка́кsa Innovation in Molecular Explosives Detection

Most Accurate detection with Scenthound Complex

Molecular Analysis of Explosives with Tarkka TOF

Reduce queues and enhance security with K1000

x1000

- What is the role of newly formed particles in the cloud activation *in-situ*?
- Do they alter the cloud properties / precipitation?

Petäjä, T. (2013) Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC), US Department of Energy, Office of Science, DOE/SC-ARM-13-024.

The Atmospheric Radiation Measurement (ARM) Climate

Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world.

ARM Mobile Facility 2 in Hyytiälä, Finland, February 2014 – September 2014

Goal: To understand the impact of biogenic aerosol formation on cloud properties and climate **Tools:** Aerosol Observing system (AOS), Balloon-borne

sounding system, laser distrometer, micropulse lidar, microwave radiometer, high spectral resolution lidar, Scanning W-band and Ka-band cloud radars (SWACR, M-WACKR, Ka-band zenith radar (KAZR)

Principal investigator: Tuukka Petäjä, UHEL

Biogenic Aerosols: Effects on Clouds and Climate (BAECC)

The key scientific questions:

• What is the minimum spatial scale of boreal forest that can produce its own clouds and thereby produce its own precipitation and modify the regional water cycle and sustain forest growth?

• Under which conditions is the water cycle self-sustained on the regional scale?

INSTITUTE FOR ATMOSPHERIC AND EARTH SYSTEM RESEARCH

CONTINENTAL BIOSPHERE-AEROSOL-CLOUD-CLIMATE (COBACC) FEEDBACK

BVOC=biogenic volatile organic compounds SOA=secondary organic aerosol CS=the condensation sink A_{tot}=total aerosol surface area V_{tot}=total aerosol volume CCN=cloud condensation nuclei CDNC=cloud droplet number concentration GPP=gross primary productivity

Kulmala et al., 2014, BER

Development of Aerosol and Haze laboratory at BUCT

November, 2017

January, 2018

Feedbacks and interactions can slow down (negative) the change, or enhance it (positive).

These need to be verified against observations and monitored in a continuous, systematic manner.

ATMOSPHERIC SCIENCE

Clean the Air, Heat the Planet?

Almut Arneth,12* Nadine Unger,3 Markku Kulmala,2 Meinrat O. Andreae4

Science, 2009

SCIENTIFIC REPORTS

Enhanced air pollution via aerosolboundary layer feedback in China

T. Petäjä^{1,2}, L. Järvi¹, V.-M. Kerminen¹, A.J. Ding², J.N. Sun², W. Nie^{1,2}, J. Kujansuu¹, A. Virkkula^{2,3}, X.-Q. Yang², C.B. Fu², S. Zilitinkevich^{1,3,4,5,6} & M. Kulmala¹

Example:

Control measures to improve air quality can reduce the amount of cooling sulfate aerosols.

Good for the health, bad for the climate.

Poor air quality episodes are amplified by the feedback mechanisms!

RESEARCH

ATMOSPHERIC CHEMISTRY

Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity

Lei Yao^{1*}, Olga Garmash^{2*}, Federico Bianchi^{2,3}, Jun Zheng⁴, Chao Yan², Jenni Kontkanen^{2,5}, Heikki Junninen^{2,6}, Stephany Buenrostro Mazon², Mikael Ehn², Pauli Paasonen², Mikko Sipilä², Mingyi Wang¹†, Xinke Wang¹, Shan Xiao¹‡, Hangfei Chen¹, Yiqun Lu¹, Bowen Zhang¹, Dongfang Wang⁷, Qingyan Fu⁷, Fuhai Geng⁸, Li Li⁹, Hongli Wang⁹, Liping Qiao⁹, Xin Yang^{1,10,11}, Jianmin Chen^{1,10,11}, Veli-Matti Kerminen², Tuukka Petäjä^{2,12}, Douglas R. Worsnop^{2,13}, Markku Kulmala^{2,3}, Lin Wang^{1,10,11,14}§

> Trace concentrations of sulfuric acid, amines and condensable organic vapors control formation of new aerosol particles

Yao et al., Science **361**, 278–281 (2018) 20 July 2018

BLH - air pollution feedback: Petäjä et al., 2016, Sci Rep

Kulmala et al., in prep.

HIGH DENSITY OF MEASUREMENT STATIONS & AUTOMATICALLY CALIBRATED SENSORS PROVIDING REAL-TIME MEASUREMENT DATA

- Low-cost mini- & micro-sensors and base stations across the environment supported by 4G NB-IOT network leading to a viable 5G service
- Field calibration by highly accurate atmospheric science SMEAR Station

Enables multiple applications:

- City planning, health and wellbeing, wearable and fitness devices, vehicular technology, mobile apps, HD-maps
- High quality maps and calibration technique that takes into account correlations across environments.

Monitoring stations in urban and rural areas. Multiple ways to use sensors.

SMEAR* = Station for Measuring Earth Surface-Atmosphere Relations (SMEAR) https://www.atm.helsinki.fi/SMEAR/

Main message:

- 1) Commitment to comprehensive and continuous environmental observations
- 2) Continuous method development (instrumentation, models)
- 3) Active and open collaboration across various boundaries
- 4) Willingness to tackle and solve grand challenges together

SMEAR II station (boreal) 1995 -

https://www.helsinki.fi/en/inar-institute-for-atmospheric-and-earth-system-research

Thank you! Спасибо!

https://www.atm.helsinki.fi/peex

Euroopan unioni Euroopan aluekehitysrahasto

Support from Academy of Finland, European Commission, Regional Council of Lapland, Helsinki-Uusimaa Regional Council, and Business Finland are gratefully acknowledged.

Contact: Prof. Tuukka Petäjä, University of Helsinki <u>tuukka.petaja@helsinki.fi</u> +358 50 41 55 278

Prof. Tuukka Petäjä

- Full Professor of experimental atmospheric sciences
- Vice director of INAR institute
- Head of Aerosol laboratory, Head of SMEAR research infrastructure
- Pan Eurasian Experiment (PEEX) Science director
- over 480 peer reviewed publications, 19 in Nature or Science
- H-factor 73, total number of citations over 24 900
- Vaisala award for development of scientific instrumentation for nanoparticles and trace gases
- Thompson Reuters Highly Cited scientist since 2014
- Science and Technology in Society Future Leader, New York Academy of Sciences
- Academician, International Eurasian Academy of Sciences
- Research areas: 1) Aerosol-cloud interactions, 2) Development of mass spectrometric methods for atmospheric aerosols and trace gases; 3) Measurement techniques, aerosol particles; 4) Long-term and field campaigns; 5) Aerosol-cloud-climate-biosphere interactions;
- Cumulative personal research funding 7.0 M EUR, as a PI or co-PI 32.7 MEUR

