

Aerosol properties, dynamics, chemistry and microphysics

Dr. Olga Popovicheva

Moscow State University , Moscow

Primary and secondary pollutants in atmosphere

AEROSOL SOURCE

ANTROPHOGENIC SOURCES

mixed aerosol

NATURAL sources

Aerosol chemical composition relates to a source

Aerosol/ BC: Contributing global scale challenges

- Globally BC emissions
- Transport contributes ~25% of total anthropogenic emission

Biomass burning and particulate matter

Open biomass burning (BB) relating to deforestation, grass burning, and vegetation fires contributes **up 42%** to combustion emission global inventory.

Biomass Burning Activities – Global

Classification of Fires

NATURAL (~ 10%)

Wildfires (Forests) Savannah and grass burning

ANTHROPOGENIC (~ 90%)

Land-clearing / slash & burn agriculture Residential biofuel combustion

Biomass Burning Activities – Global

Classification of Fires

NATURAL (~ 10%)

ANTHROPOGENIC (~ 90%)

Wildfires (Forests) Savannah and grass burning Land-clearing / slash & burn agriculture Residential biofuel combustion

Environmental Impacts of Biomass Smoke

- Global and regional climate impact
- Air Quality and visibility deterioration
- Adverse effects on human health and ecosystems
- Disturbance of biogeochemical cycling

Biomass Burning Activities in Russia

• 52% of Russia is covered by forests; 3% is burned annually!

Types of Fires

PEATLAND FIRES

Siberia

European part of Russia

AGRICULTURAL RESIDUE BURNING **FOREST FIRES**

Siberia

Peat Burning vs. Forest Fires – Smoldering vs. Flaming Combustion

Distinct Peat Combustion Conditions

- Low-temperature combustion (< 600 °C)
- Incomplete form of combustion
- Deep smoldering is essentially independent of surface conditions (e.g., weather)
- Soils in peatlands smolder as ground fires
- Difficult to extinguish/control
- High vulnerability to burning
- Cross-biome similarities yet important differences

BIOMASS COMPOSITION

Average biomass composition

Cellulose: a linear polymer composed of 7000-12000 D-glucose monomers,

Hemicelluloses: consist of about 100-200 sugar monomers (glucose, mannose, galactose, arabinose, xylose, and a few sugar acids), and are less structured than cellulose molecules.

[Sergejewa, 1959; Petterson, 1984]

Biomass Burning Chemistry

Cellulose + Hemicellulose Composition and Breakdown

Courtesy of Y. linuma

Source Apportionment

Molecular Tracer/Marker Methods

- "Compounds with unique properties that by their pure existence allow for a conclusion about their sources or formation." (*Rudich et al., Ann. Rev. Phys. Chem., 2007*)
 - Specific emission from one source type
 - Conservation of tracers (i.e., sufficient stability during atmospheric lifetime of tracer species)
 - Availability of sensitive and accurate analytical methods

Molecular Source Tracer Examples:

Biogenic & Biomass Smoke Aerosols

Sources + Selected Products/Tracers

O Primary Biogenic Aerosol

- Leaf abrasion
- Plant detritus
- Microbial processes

- Biogenic SOA
 - Terpene oxidation
 - Isoprene oxidation
 - Other BVOCs

- **o** Biomass Burning
 - Agricultural residues
 - Wildland fires
 - Biofuel use (residential)

Laboratory simulations of wildfire biomass burning are performed in a Large Aerosol Chamber of 1800 m³ to assess microstructure, optical, and chemical aerosol properties.

IAO, Tomsk

Chamber Combustion of Siberian Forest Fuels

T smoldering \approx 400C

Siberian pine

Debris

- SEM/EDX
- thermo-optics
- FTIR
- GC-MS
- HPAEC

INDIVIDUAL PARTICLE ANALYSIS

- Morphology, shape, size, composition

COMPOSITION BULK ANALYSIS

- Organic Carbon (OC), Elemental Carbon (EC), Carbonate Carbon (CC)
 - thermo-optical transmission
- Water-soluble organic carbon (WSOC)
 - total organic carbon (TOC) analyzer
- Inorganic ions
 - ion chromatography
- Organic/inorganic functionalities
 - FTIR spectroscopy
- Polar organic compounds (acids and others)
- Molecular tracers for biomass burning
 - HPAEC-PAD

INDIVIDUAL PARTICLE ANALYSIS

SEM/EDX Microscopy

SEM. Panorama of an impaction spot

Groups of pine and debris carbonaceous/fly ash particles and their abundance in PM2.5 smoke particles

Groups	pine flaming	debris flaming	pine smoldering	debris smoldering
Soot/	C = O (87)	$C = O_2(93)$	$C_{2} O_{2} (57)$	$C_{\rm e}O_{\rm e}(69)$
Organic	C9504(07)	C ₉₇ C ₃ (75)	$C_{85}O_{15}(57)$	0,00,11(0)
Ca-rich	C ₅₁ O ₃₀ Ca ₁₇	$C_{67}O_{17}Ca_{14}(1.4)$	$C_{49}O_{30}Ca_{19}(15)$	$C_{76}O_{16}Ca_7(11)$
	$Mg_1(5.6)$			
Si-rich	C ₄₅ O ₃₀ Si ₁₁ Al ₅ F	$C_{39}O_{30}Si_{18}Al_7$	C ₃₄ O ₃₁ Si ₁₆ Al ₁₃	$C_{57}O_{24}Si_{10}K_1 Al_6$
	$e_4 Ni_2(3.6)$	$K_1 Fe_2(5.5)$	K ₂ (19)	(14)
S-rich	$C_{62}O_{22}S_{14}(3.8)$		$C_{58}O_{11}S_{27}(8.3)$	$C_{48}O_{17}S_{35}(1.5)$
N-rich				$C_{67}O_9N_{24}(1.8)$
Fe-rich			$C_{42} O_{28}$	C ₂₅ Fe ₂₃ O ₃₁ Si ₁₂ Mg ₅
			Fe ₁₇ Mg ₂ Al ₃ Si ₅	$Al_{3}K_{1}(2.2)$
			$Ca_4(1.4)$	

FLAMING

100 nm

= 100.3 nm

open fire pine wood

> **Group 1. TYPICAL SOOT** on average 95% C and 4% O

~25% of particles contain 100% of C in correlation with OC/EC ~ 0.3-0.5

SMOLDERING

smoldering pine

Gas-to particle condensation

Group 1. Organics on average 85% C and 15% O

not soot, OC/EC ratio of 34-194 no EC particles

Organic carbon (OC) / Elemental carbon (EC) from pine and debris flaming and smoldering

Group 3. Si-rich

FLAMING

Si-rich Al-Si-K (Fe, Mg) aluminosilicates such as sanidine $[KAISi_3O_8]_4$ in debris flame

Group 4. S-rich

FLAMING

5µm

In potassium sulfates, in accordance with K⁺ and SO_4^{2-} .

SMOLDERING

Group 2. Ca-rich

Group 3. Si-rich

Low temperature combustion

- No condensation
- of inorganic compounds
- in correlation with low ions

Спектр 31

4.5

Group 4: S-rich

2.5

3

2

3.5

1.5

1

Aging of smoke microstructure

Molecular markers from Siberian biomass burning

Biomass Burning Activities – Siberia

Fire activity in Siberia observed on 30 July, 2012

Biomass Burning Activities – Siberia

Air quality in Tomsk, Siberia, observed between 27 and 28 July, 2012

Biomass Burning Activities – Siberia

Air quality in Tomsk, Siberia, observed on 30 July, 2013

Aerosol monitoring and sampling station

Nephelometer – aerosol scattering Aethalometer – aerosol absorption -> BC Absorption Photometer MAAP PM10 and PM2.5 filter sampling

IAO, Tomsk

56.5° N, 85.1°E

Summer 2013

PM and BC Concentrations during wildfires in Siberia

OC and EC Concentrations during wildfires in Siberia

PM Composition during wildfires in Siberia

Functional Groups during wildfires in Siberia

Smoke during wildfires enhances ambient levels in Tomsk of:

> sulfates, ammonium, nitrates

acid carbonyl groups

- \rightarrow indication of photochemical aging
- > carbonates due to soil dust emissions during large wildfires

Conclusions:

Microphysical and chemical properties of aerosol emissions from combustion of Siberian boreal forest plant species

- High temperature burning in open **flaming** fires of plants significantly influences the particle formation and composition, producing soot and fly ash.
- \rightarrow Soot is a micromarker of Siberain BB.
- Fraction of EC and OC, non-acid and nitro compounds are dominant.
- Formation of quasi-liquid tar, organic and fly ash particles at low temperature in **smoldering** is significant.
- Fraction of OC, acid and non acid, levoglucozane,n - alkane compounds are dominant.

Anhydrosugars are good markers of Siberian wood burning in smoldering phase.

Characterization of smoke aerosols of extreme wildfire event, August 2010

Summer 2010 brought an unusual heat into Eastern Europe, temperatures in Moscow during July and August were from +18°C above normal

Heat and dry conditions provoked numerous wildfires of forest, and peat bogs

Starting with 6 August 2010 Moscow megacity was covered with a thick haze considerably affecting the air quality

Moscow smoke sampling

Week sampling

> at suburb site , 20 km to the north of Moscow > in Moscow center, Ordynka street,

from 7 to 14 August 2010, 5 to 16 August 2011

Daily sampling

in Moscow center, Ordynka street,
from 4 to 17 August 2010,
5 to 16 August 2011

and characterization

- Total carbon (TC), OC, and EC, and carbonate carbon (CC)
 - by thermo-optical method, Sunset off-line Analyzer,
- Organic/inorganic functionalities by FTIR Prestige-21 spectrometer,
- anhydrosugars (levoglucosan, mannosan and galactosan)

by HP liquid chromatography,

- inorganic ions by HPLC system,
- individual particles analysis by SEM/EDX, by cluster analysis

Analyses of composition indicates aerosols in Moscow were affected by open fires in those days of intensive smoke.

Total carbon 10 times higher than 2011 EC and CC 2 times higher OC/EC up to 28 - smoldering fires LG 100 times higher K+/EC is tracer of biomass burning

