Atmospheric Gas- and Liquid Phases Chemistry

Sergei P.Smyshlyaev Russian State Hydrometeorological University (RSHU) 79 Voronezhskaya str., St.Petersburg 195196, Russia smyshl@rshu.ru

Atmospheric chemistry and global change

Many of the global environmental changes forced by human activities are mediated through the chemistry of the atmosphere:

- Degradation of air quality: Global pollution resulting from industrial combustion and biomass burning
- Increase in the abundance of tropospheric oxidants including ozone and related impacts on the biosphere and human health
 - Changes in the self-cleaning capability of the atmosphere and in the residence time of anthropogenic trace gases
 - Climatic and environmental impact of changes in land use including deforestation, wetland destruction, etc.
 - Perturbations of biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur
 - Acidic precipitation
 - Climatic changes (global warming) resulting from increasing emissions of CO2 and other greenhouse gases
 - Climatic impacts (regional cooling) of sulfate aerosols resulting from anthropogenic SO2 emissions
 - Depletion of stratospheric ozone, related increase in the level of UV-B solar radiation at the surface, and impacts on the biosphere and human health

Trace Gases

- There are thousands of gases in the atmosphere.
- Some of the gases are evenly spread all over the world, whereas the concentrations of others depends strongly on sources, local conditions and on the time of day.
- A gas in the atmosphere can be:
- a) a major component of the air (oxygen, nitrogen, argon) – 99.96 %

b) a major trace gas (water vapor, carbon dioxide, methane, ozone, nitrogen dioxide)
c) a minor trace gas (organic gases such as butane, ethanol, CFCs)

Trace gases are gases which make up only a tiny fraction of the air. Levels of these trace gases can be as low as one molecule in one million (ppm), billion (ppb) or even one trillion (ppt) air molecules.

OH Radical is a Strong Oxidant in the Troposphere

OBSERVED TRENDS IN TROPOSPHERIC OH •

OH reacts rapidly with most reduced non-radical species, and is particularly reactive toward Hcontaining molecules due to Habstraction reactions converting OH to H2O.

- Its role in stratospheric oxidation is well known
- Tropospheric OH concentrations of the order of 10⁶ molecules cm⁻³, resulting in a tropospheric lifetime for CO of only a few months and allaying concerns that CO could accumulate to toxic levels.

OH Production in the Atmosphere

$$O_3 + h\nu \rightarrow O_2 + O(^1D)$$
$$O(^1D) + M \rightarrow O + M$$
$$O(^1D) + H_2O \rightarrow 2OH$$

- Critical to the generation of OH is the production of O(1D) atoms by (R1).
- Until 1970 it was assumed that production of O(1D) would be negligible in the troposphere because of near-total absorption of UV radiation by the O3 column overhead.
- It was thought that oxidation of species emitted from the Earth's surface, such as CO and CH4, required transport to the stratosphere followed by reaction with OH in the stratosphere

O(1D) Production in the Atmosphere

 $O_3 + hv \rightarrow O(^3P) + O_2, \quad \lambda < 800 \text{ nm}$ $O_3 + hv \rightarrow O(^1D) + O_2, \quad \lambda < 320 \text{ nm}$

 $O(^{1}D)$ formation is important for the formation of OH, which is the cleansing agent of the atmosphere:

 $O(^{1}D)+H_{2}O \rightarrow 2 OH$

Only a fraction of the O(1D) radicals react with water vapour, because:

and $O(^{1}D)+M \rightarrow O(^{3}P)$ $O(^{3}P)+O_{2} \rightarrow O_{3}$

O(1D) Production in the Troposphere

OH Tropospheric Sinks

$CO + OH \rightarrow CO_2 + H$ $CH_4 + OH \rightarrow CH_3 + H_2O$

- Carbon monoxide and methane are the principal sinks for OH in most of the troposphere.
- These two gases play therefore a critical role in controlling OH concentrations;
- and more generally in driving radical chemistry in the troposphere.

METHANE OXIDATION SCHEME

In clean troposphere, ~70% of OH reacts with CO, 30% with CH₄

GLOBAL METHANE SOURCES, Tg a⁻¹ [IPCC, 2007]

CHEMICAL GREENHOUSE GASES

Greenhouse radiative forcing of climate between 1750 and 2005 [IPCC, 2007]

Referenced to emission

Referenced to concentration

OZONE: "GOOD UP HIGH, BAD NEARBY"

Tropospheric ozone precursors Sources: combustion, soils, lightning Volatile organic compounds (VOCs) Methane

Sources: wetlands, livestock, natural gas... Non-methane VOCs (NMVOCs)

Sources: vegetation, combustion Carbon monoxide (CO) Sources: combustion, VOC oxidation

IPCC RADIATIVE FORCING ESTIMATE FOR TROPOSPHERIC OZONE (0.35 W m⁻²)

...but these underestimate the observed rise in ozone over the 20th century Fitting to observations would imply a radiative forcing of 0.8 W m⁻²

SURFACE

OZONE PRODUCTION: BASIC CHAIN MECHANISM

CHAIN MECHANISM FOR O₃ PRODUCTION: CO OXIDATION

Initiation: source of HOx (OH production)

Propogation:

 $CO + OH \rightarrow CO_2 + H$ $H + O_2 + M \rightarrow HO_2 + M$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + hv (+O_2) \rightarrow NO + O_3$ NET: $CO + 2O_2 \rightarrow CO_2 + O_3$

Termination: by loss of HOx (self reaction of HO₂)

 \rightarrow Propagation efficiency of the chain determined by the abundance of NOx

NOTE: HOx and NOx catalyze O_3 production in the troposphere, and O_3 destruction in the stratosphere! The key difference is that $[O_3]$ and [O] are much lower in the troposphere, thus NO₂ does not react with O, and OH is far more likely to react with CO, HC, etc. than with O_3

Ozone production from NO₂ photolysis following peroxy+NO rxns (where peroxy radicals generated by reactions above)

High NOx: CH_3O_2 and HO_2 react only with NO, and CH_2O removed only by photolysis $CH_4 + 10O_2 \rightarrow CO_2 + H_2O + 5O_3 + 2OH$ **Low NOx:** CH_3O_2 reacts with HO_2 , CH_3OOH reacts with OH and CH_2O reacts with OH $CH_4 + 3OH + 2O_2 \rightarrow CO_2 + 3H_2O + HO_2$

DEPENDENCE OF OZONE PRODUCTION ON NO_x AND HYDROCARBONS

NET: $RH + 4O_2 \rightarrow R'CHO + 2O_3 + H_2O$

"NO_x- saturated" or "hydrocarbon-limited" regime "NO_x-limited" regime

Largest global flux is from isoprene (300-500 Tg C yr⁻¹)

Sources of Volatile Organic Compound (VOC) Emissions

Coatings

Refinery Operations and Chemical Production

VOC

Transportation

Biogenic Emissions

Photochemical oxidation of CO and volatile organic compounds (VOCs) catalyzed by hydrogen oxide radicals (HO_x) in the presence of nitrogen oxide radicals (NO_x) $HO_x = H + OH + HO_2 + RO + RO_2$ $NO_x = NO + NO_2$

Oxidation of CO:

Oxidation of VOC:

 $CO + OH \rightarrow CO_2 + H$ $H + O_2 + M \rightarrow HO_2 + M$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + h\nu \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$ Net: $CO + 2O_2 \rightarrow CO_2 + O_3$

double bonds of $RH + OH \rightarrow R + H_2O \leftarrow$ unsaturated VOCs $R + O_2 + M \rightarrow RO_2 + M$ RO can also $RO_2 + NO \rightarrow RO + NO_2$ decompose or isomerize; rang $NO_2 + hv \xrightarrow{O_2} NO + O_3$ carbonyl produ $RO + O_2 \rightarrow R'CHO + HO_2 \leftarrow$ $HO_2 + NO \rightarrow OH + NO_2$ Net: $RH + 4O_2 \rightarrow R'CHO + 2O_3 + H_2O$

OH can also add to

Carbonyl products can react with OH to produce additional ozone, or photolyze to generate more HO_x radicals (branching reaction)

OXIDATION OF HYDROCARBONS CONTRIBUTE TO OZONE FORMATION IN POLLUTED AIR

Generic Alkane OH Oxidation Scheme (no longer just CO and CH₄!)

Additional oxidation by NO₃ (but only at night!)

<u>Alkenes:</u> OH oxidation adds to double bond (does not abstract H as with alkanes). With double bond, alkenes can also be oxidized by ozone
 <u>Aromatics (with benzene rings):</u> reactive with OH, via either addition or abstraction
 → source of secondary organic aerosol (SOA)

OZONE CONCENTRATIONS vs. NO_x AND VOC EMISSIONS

GLOBAL BUDGET OF TROPOSPHERIC OZONE

General rules for atmospheric oxidation of hydrocarbons

- Attack by OH is by H abstraction for saturated HCs (alkanes), by addition for unsaturated HCs (alkenes)
- Reactivity increases with number of C-H bonds, number of unsaturated bonds
- Organic radicals other than peroxy react with O₂ (if they are small) or decompose (if they are large); O₂ addition produces peroxy radicals.
- Organic peroxy radicals (RO₂) react with NO and HO₂ (dominant), other RO₂ (minor); they also react with NO₂ but the products decompose rapidly (except in the case of peroxyacyl radicals which produce peroxyacylnitrates or PANs)
- RO₂+HO₂ produces organic hydroperoxides ROOH, RO₂+NO produces carbonyls (aldehydes RCHO and ketones RC(O)R')
- Carbonyls and hydroperoxides can photolyze (radical source) as well as react with OH
- Unsaturated HCs can also react with ozone, producing carbonyls and carboxylic acids
- RO₂+R'O₂ reactions produce a range of oxygenated organic compounds including carbonyls, carboxylic acids, alcohols, esters...

Problems of Atmospheric Chemistry Modeling

- While in the air, a substance can be chemically altered in one of two ways.
- First, the sunlight itself may contain sufficient energy to break the molecule apart, a so-called photolysis reaction.
- The more frequently occurring chemical alteration, however, takes place when two molecules interact and undergo a chemical reaction to produce new species.
- Atmospheric chemical transformations can occur homogeneously or heterogeneously.
- Homogeneous reactions occur entirely in one phase;
- Heterogeneous reactions involve more than one phase, such as a gas interacting with a liquid or with a solid surface.
- How to estimate the rate of chemical destruction or production of the gaseous species?
- How to solve chemical equations and estimate gases evolution?

Physical Principles

- The fundamental physical principle governing the behavior of a chemical in the atmosphere is conservation of mass.
- In any imaginary volume of air the following balance must hold:

Rate of the	rate of	rate of	rate of	rate of
species	- species	_ introduction _	- removal of -	accumulation
flowing in	flowing out	(emission) of	species	of species in
nowing in	nowing out	species	species	imaginary volume

• This balance must hold from the smallest volume of air all the way up to the entire atmosphere.

Model Equation of Mass Conservation

$$\frac{dQ}{dt} = (F_{\rm in} - F_{\rm out}) + (P - R)$$

- If we let Q denote the total mass of the substance in the volume of air;
- Fi_n and F_{out} the mass flow rates of the substance in and out of the air volume, respectively;
- *P* the rate of production of the species from chemical sources;
- and *R* the rate of chemical removal of the species

REACTION RATES

- A **reaction rate** is the time rate of change of **concentration** of any **reactant** in a reaction.
- The rate of an elementary chemical reaction equals a rate coefficient multiplied by the concentration of each reactant.
- If reactant concentrations are expressed in units of molecules of gas per cubic centimeter of air, the rate of reaction is in units of molec cm⁻³ s⁻¹, regardless of whether the reaction has a first-, second-, or third-order rate coefficient;
- A rate coefficient relates concentrations to a reaction rate and depends on the reaction order.

ORDER OF REACTION

Three types of chemical reaction are important:

First-order (unimolecular) $A \rightarrow B + C$ Second-order (bimolecular) $A + B \rightarrow C + D$ Third-order (termolecular) $A + B + M \rightarrow AB + M$

First-order reaction rate

$$A - > B + C$$

$$\frac{d[\mathbf{A}]}{dt} = -k_1[\mathbf{A}]$$

$$\frac{dB}{dt} = \frac{dC}{dt} = k_1 A$$

- The rate of a firstorder reaction is expressed in molecules cm⁻³ s⁻¹
- the first-order rate coefficient k₁ has units of s⁻¹ (reciprocal seconds)

True first-order reactions

222
Rn $\rightarrow ^{218}$ Po + α -particles

- Few reactions are truly first-order, in that they involve decomposition of a molecule without intervention of a second molecule.
- The classic example of a true first-order reaction is radioactive decay

Photodissociation Reactions

$$A + h\nu \rightarrow B + C$$

$$\frac{dB}{dt} = \frac{dC}{dt} = -\frac{dA}{dt} = J_A A$$

- In the atmosphere, by far the most important class of first-order reactions is photodissociation reactions in which absorption of a photon of light (*hv*) by the molecule induces chemical change;
- *hv* represents a photon of light of frequency v.
- In the photolysis of species A, the rate coefficient is customarily denoted by the symbol j_A

Photodissociation rate parameters depend on spectrally resolved actinic flux.

Photolysis Rate Parameter

 $J = \int I(\lambda) \times \sigma(\lambda) \times \phi(\lambda) \, d\lambda$

Actinic Flux

Absorption Cross-Section

Quantum Yield

Wavelength

Thermal decomposition

$$A + M \rightarrow B + C + M$$

$$\frac{dB}{dt} = \frac{dC}{dt} = -\frac{dA}{dt} = k_T \cdot A \cdot M$$

$$k_1 = k_T \cdot M$$

- Thermal decomposition of a molecule is often represented as first-order, but the energy required for decomposition is usually supplied through collision with another molecule.
- If the other molecule is an air molecule, it is denoted as M

Two Stages of Thermal Decomposition

$$A+M->A^*+M, \quad k_A$$

$$A^* \rightarrow B + C, \quad k_R$$

OR

$$A^* + M \to A + M, \quad k_D$$

 Apparently unimolecular reaction is really the result of the processes of activation, reaction and deactivation

Rate of two stage reaction

$$-\left(\frac{d(A)}{dt}\right)=k_r(A^*)$$

$$\frac{d(\boldsymbol{A}^{*})}{dt} = \boldsymbol{0} = k_{act}(\boldsymbol{A})(\boldsymbol{M}) - \left[k_{d}(\boldsymbol{M}) + k_{r}\right](\boldsymbol{A}^{*})$$

$$(A^*) = \frac{k_{act}(A)(M)}{k_r + k_d(M)}$$

$$\frac{d(A)}{dt} = -\left(k_r \frac{k_{act}(A)(M)}{k_r + k_d(M)}\right)$$

 $k_u = k_{act}(M) \frac{k_r}{k_r + k_d(M)}$

- The steady state concentration of A* is derived;
- and the effective first order reaction rate k_u (sec⁻¹)

Second-order reactions

$A+B \rightarrow C+D$

$$\frac{d[\mathbf{A}]}{dt} = -k_2[\mathbf{A}][\mathbf{B}]$$

- The rate of a secondorder, or bimolecular, reaction is
- where the secondorder rate coefficient
 k₂ has units of cm³ molecule⁻¹ s⁻¹.

Collision Theory

$$A+B \rightarrow C+D$$

$$R_{\rm AB} = -\frac{dn_{\rm A}}{dt} = -\frac{dn_{\rm B}}{dt} = \pi d^2 \left(\frac{8k_{\rm B}T}{\pi\mu}\right)^{1/2} n_{\rm A} n_{\rm B}$$

$$R_{\rm AB} = \pi d^2 \left(\frac{8k_{\rm B}T}{\pi\mu}\right)^{1/2} \exp\left(-\frac{E}{RT}\right) n_{\rm A} n_{\rm B}$$

$$k = \underbrace{\pi d^2 \left(\frac{8k_{\rm B}T}{\pi\mu}\right)^{1/2}}_{A} \exp\left(-\frac{E}{RT}\right)$$

- Consider the bimolecular reaction
- If reaction occurred with every collision, then the rate of reaction between A and B would be just
- Not every collision will result in reaction; only those collisions that have sufficient kinetic energy to surmount the energy barrier for reaction will lead to reaction. For a Maxwell distribution the fraction of encounters that have energy greater than a barrier *E* (kJ mol-1) is *exp(—E/RT)*.
- The rate of reaction is then

Arrhenius form

$$k = A \exp\left(-\frac{E}{RT}\right)$$

- As indicated, the terms multiplying the exponential are customarily denoted by *A*, the collision frequency factor, or simply the preexponential factor.
- Thus, the reaction rate coefficient consists of two components, the frequency with which the reactants collide and the fraction of collisions that have enough energy to overcome the barrier to reaction.
- In many cases the preexponential factor can be considered to be independent of temperature, and the rate coefficient is written as

Termolecular reactions

$$A + B + M \rightarrow AB + M$$

 $A + B \rightarrow AB^{\dagger}$
 $AB^{\dagger} + M \rightarrow AB + M$

$$A + B \xrightarrow{M} AB$$

- The termolecular reaction actually does not take place as the result of the simultaneous collision of all three molecules A, B, and M.
- The probability of such an event happening is practically zero.
- Rather, what actually occurs is that molecules A and B collide to produce an energetic intermediate AB† (the dagger representing vibrational excitation)
- In order for AB⁺ to proceed to the product AB, its excess energy must be removed through collision with another molecule denoted by M, to which the excess energy is transferred

SETS OF REACTIONS

 $\dot{N}O + O_3 \rightarrow \dot{N}O_2 + O_2$ Rate₁ = $k_1[NO][O_3]$ $\dot{O} + O_2 + M \rightarrow O_3 + M$ Rate₂ = $k_2[O][O_2][M]$ $\dot{N}O_2 + h\nu \rightarrow \dot{N}O + \dot{O}$ Rate₃ = $J[NO_2]$ $\dot{N}O_2 + O \rightarrow \dot{N}O + O_2$ Rate₄ = $k_3[NO_2][O]$

- Atmospheric chemical problems require the determination of gas concentrations when many reactions occur at the same time.
- A difficulty arises because a species is usually produced and/or destroyed by several reactions.

$$\frac{d[\text{NO}]}{dt} = P_{\text{c}} - L_{\text{c}} = \text{Rate}_3 + \text{Rate}_4 - \text{Rate}_1$$
$$= J[\text{NO}_2] + k_3[\text{NO}_2][\text{O}] - k_1[\text{NO}][\text{O}_3]$$

$$\frac{d[NO_2]}{dt} = P_c - L_c = Rate_1 - Rate_3 - Rate_4$$

= $k_1 [NO] [O_3] - J [NO_2] - k_3 [NO_2] [O]$
$$\frac{d[O]}{dt} = P_c - L_c = Rate_3 - Rate_2 - Rate_4$$

= $J [NO_2] - k_2 [O] [O_2] [M] - k_3 [NO_2] [O]$
$$\frac{d[O_3]}{dt} = P_c - L_c = Rate_2 - Rate_1 = k_2 [O] [O_2] [M] - k_1 [NO] [O_3]$$

Chemical Families

Species are grouped together so that the fast reactions don't change the group concentration.

Example:

 $NO_x = NO + NO_2$

dt

dt

dt

$$\frac{d\text{NO}}{dt} = \text{Emissions} + j_{NO_2} \cdot \text{NO}_2 - \text{NO}(k_1 \cdot \text{O}_3 + k_2 \cdot \text{HO}_3)$$
$$\frac{d\text{NO}_2}{dt} = \text{NO} \cdot (k_1 \cdot \text{O}_3 + k_2 \cdot \text{HO}_3) - j_{NO_2} \cdot \text{NO}_2 - k_3 \cdot \text{NO}_2 \cdot \text{OH} - \text{deposition}$$

 $\frac{1}{1} + \frac{1}{1} = \text{Emissions} - k_3 \cdot \text{NO}_2 \cdot \text{OH} - \text{deposition}$

Condensed mechanisms for organic chemistry

- The number of chemical reactions involving organic gases in urban air is large.
- Explicit chemical mechanisms with thousands of organic reactions have been developed (Madronich and Calvert 1989; Jenkin *et al.* 2003; Saunders *et al.* 2003).
- Although such mechanisms can now be solved in a three-dimensional atmospheric model for a period of a few days (e.g., Liang and Jacobson 2000),
- The computational demand for long-term and most practical simulations requires that the number of species and reactions be reduced.

Methods of reducing the number of organic reactions

- Three methods of reducing the number of organic reactions in a model are the carbonbond lumping method (e.g., Whitten *et al.* 1980; Gery *et al.* 1989),
- The surrogate-species method (e.g., Atkinson et al. 1982; Lurmann et al. 1987; Griffin et al. 2002), and
- The lumped-species method (e.g., Stockwell 1986; Carter 1990, 2000).

Carbon-Bond Lumping Method

- With the carbon-bond lumping method, individual organic gases are segregated into one or more bond groups that have similar chemical reactivity.
- For example, a butane molecule, which has four carbons connected by single bonds, is divided into four single carbon atoms, each represented by the paraffin (PAR) bond group.

Surrogate-Species Method

- With the surrogate-species method, all species of similar reactivity are grouped together.
- Propane and pentane are assumed to have the same reactivity as *n*-butane,
- And all three species are grouped as one surrogate species.

Lumped-Species Method

- With the **lumped-species method**, species of similar reactivity are lumped together, just as with the surrogate species method.
- The difference is that with the surrogate-species method the reaction rate coefficient for each surrogate species is set equal to that of a particular gas.
- The reaction rate coefficient of a lumped species is determined before a model simulation by taking a molefraction-weighted average of the reaction rates of each species in the lumped group

SUMMARY OF URBAN CHEMISTRY

- Photochemical smog production is governed by emission of oxides of nitrogen and reactive organic gases.
- Emitted gases, called primary pollutants, react in the presence of sunlight to produce secondary pollutants, such as ozone and peroxyacetyl nitrate.
- The radicals that break down emitted reactive organic gases are OH, HO2, O3, NO3, and O.
- Photolysis also breaks down certain organics.
- Because reactive organic gas radicals compete with O3 to produce NO2 from NO, the photostationary-state relationship does not usually hold in urban air.
- Because gasphase organic chemistry involves reactions among thousands of species, condensed reaction mechanisms have been developed to simplify the simulation of organic chemistry in numerical models.

Further reading

- This lecture is based on the materials of the following books that are recommended for further reading
- J.H.Seinfeld and S.N.Pandis. ATMOSPHERIC CHEMISTRY AND PHYSICS: From Air Pollution to Climate Change. JOHN WILEY & SONS, INC. 2006.
- MARK Z. JACOBSON. Fundamentals of Atmospheric Modeling. Cambridge University Press 2005.
- Daniel J. Jacob. INTRODUCTION TO ATMOSPHERIC CHEMISTRY. Princeton University Press. 1999.

THANKS

FOR YOUR ATTENTION !!!