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What is an Atmospheric Boundary Layer (ABL)?

Source: Atmospheric boundary layer - Glossary of Meteorology (ametsoc.org)

ABL also called boundary layer, planetary boundary layer.

The bottom [turbulent] layer of the troposphere that is in contact with the surface of the earth.

It is eften [always] turbulent and is capped by a statically stable layer of air or
[potential] temperature inversion.

The ABL depth (i.e., the inversion height) is variable in time and space, ranging from tens of
meters in strongly statically stable situations, to several kilometers in convective conditions over
deserts.

During fair weather over land, the ABL has a marked diurnal cycle. During daytime, a mixed layer of

vigorous turbulence grows in depth, capped by a statically stable entrainment zone of intermittent turbulence.
Near sunset, turbulence decays, leaving a residual layer in place of the mixed layer. During nighttime, the
bottom of the residual layer is transformed into a statically stable boundary layer by contact with the radiatively
cooled surface. Cumulus and stratocumulus clouds can form within the top portion of a humid ABL,

while fog can form at the bottom of a stable boundary layer. The bottom 10% of the ABL is called the surface

layer.

Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. 666 pp.
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ABL structure
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ABL structure: An example of implications
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ABL observed with
an atmospheric lidar

Manninen, A.J., Marke, T., Tuononen, M., O’Connor, E.J., 2018.
Atmospheric Boundary Layer Classification With Doppler
Lidar. J. Geophys. Res. Atmos. 123, 8172-8189.
https://doi.org/10.1029/2017JD028169

Time-height plots of atmospheric boundary layer
classification showing

connection with the surface (i.e., surface driven
versus cloud driven) and

the turbulent mixing source, together with
time-height plots of

wind direction and

wind speed on 9 March 2016 at Julich,
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The black lines on the two lower panels show
altitude of a low-level jet (LLJ).
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Turbulent mixing is the key dynamical process
in the atmospheric boundary layer

In fluid dynamics, turbulence is a The atmosphere and the ocean are always turbulent,
process characterized by chaotic but there are “strong” (in ABL/OML and in some other
changes in fluid motions. conditions) and “weak” turbulent regimes

u Uattached Udetached

Richard Feynman has described
turbulence as the most important
unsolved problem in classical physics. 3 .

T v < — 1.5,
< L [T > 1.50,,
2 0 y/8: 0.10.40.7 1.0
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Yoon, M., Hwang, J., Yang, J., Sung, H.J., 2020. Wall-attached structures of streamwise velocity
fluctuations in an adverse-pressure-gradient turbulent boundary layer. J. Fluid Mech. 885, A12.
https://doi.org/10.1017/jfm.2019.950
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ABL In nature

Stably stratified ABL
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Chaotic process requires statistical approach

I 1 I I T 1 1 1 r T T I

Fluctuations are chaotic but not completely
random
* Not white noise
e Large, energic fluctuations are
considerably more frequent than one
may expect having a Gaussian process
Temperature fluctuations significantly more
skewed as compared to velocity
fluctuations
Turbulence could be divided on
e auniversal (Kolmogorov) part
* A non-universal (self-organized) part

i
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t [s]
Time series of the longitudinal velocity fluctuations, u(t), and their derivative, du(t)/dt. Also shown is the Warhaft, Z., 2002. Turbulence in nature and in
time series of scalar fluctuations, 6(t), and their derivative, 06(t)/0dt, in the same flow. Notice the higher the laboratory. Proc. Natl. Acad. Sci. 99,
intermittency in the scalar (bottom trace). R, = 582. Measurements by L. Mydlarski 2481-2486.

https://doi.org/10.1073/pnas.012580299
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Self-organized turbulence in the PBL
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Self-organized turbulence in the PBL

™ Table 2-2 Some typical parameters of closed cell convection (Atkinson and Zhang, 1996; Agee and
\ Lomax, 1978)

Table 2-1 Some typical parameters of open cell convection (Atkinson and Zhang, 1996; Agee and
Lomax, 1978)

Cell diameter 30 km Cell diameter 24-53 km
Cell height 2 km Cell height 1,3-2km
Cell aspect ratio (diameter/height) 15 P Cell aspect ratio (diameter/height) 3-28
Tsea-Tair 2-5°C Tsea-Tair 1.7-5 °C
Low level wind shear (direction) <7°km” | Low level wind shear (direction) <7°km’
Low level wind shear (speed) <2ms km’ ~_» | Low level wind shear (speed) <2ms" km"
Cloudiness ~ 40 % Cloudiness ~90 %

Flgure 2 Closed Cell Convectlon near the Azores (NASA MODIS Tel’ra Satellite — 12 —\pl‘ll 2006
12:30 UTC - resolution 1 km; Image courtesy of MODIS Rapid Response Project at NASA/GSFC,

(4D

Flgure 1 Open Cell Convection near the Azores (NASA MODIS Aqua Satelllte 24 anuary 2006
15:35 UTC - resolution 1 km; Image courtesy of MODIS Rapid Response Project at NASA/GSFC,

(4D
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Reynolds Decomposition: Rules

u=U+u

11/16/2021

uu = UU +u'u' +2u'U

={@ = U2
u'l=u'U=0
u' =0
uu_ = U* +
a ?{le a larggscale
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Large-eddy simulations

© by Rob Stoll

) A i a |73 :
log(E(k) | q - =0 Conservation of Mass
s ' X.

1

Energy
co:(:ail:]}i;ange issipation range ﬂu ﬂuu i 1 ﬂP ﬂzu .
brange | nerial 1N /(viscous subrange) L+ —L=-=—+p—L+F Conservation of Momentum
subrange ﬂt— ﬂxj r ﬂxl ﬂx]
. R Tg Ty, 1 . .
Y ' N 7,19 _ n 19, O Conservation of scalar (temp, species, etc.)
lo log(k) n q q..2
Integral scale K‘oholgorov scale ﬂt ﬂx] ﬂx.]

E(k) = ¢c,e?Pk=5/3

time (sec)
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Turbulence subgrid-scale closure and filtering

© by Rob Stoll
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177 I
_ ~ ~ ~ = 5
= WU, + U+ Uu+
ﬂiﬂj = (ﬂ»gﬂj — ﬁ.z-ilj) + ﬂ.z-ﬂj -> known
_ )
Y

L;; - Leonard term (stress)

— ———
o

Cij = uu; + uju; = interaction between resolved and SFSs

——

R;; = wju; = SFS “Reynold’s” stress

i -> unknown

Required closure for the turbulent stress term
1

T?;j — ngkOij — —Q.UTS@J'

"YSS research school" 13
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Nature of turbulent fluxes

e -————.;:ia ~
el 01 T ™

aui _ auiuj 1 ap* 0 aui

ot dx; pox; 0x; 0x;

+ .-

Decompose on resolved and unresolved parts (Reynolds approach or Keller-Friedman series: W =0,7u = 0)

Flux-gradient hypothesis (the first order closure):
Advection term is similar to diffusion term for small-
scale chaotic motions (turbulence)

dt

= + +

a'LTl alTllT] au’iu’j 1 6? 6 6171
= += k
axj ax] axi

ou;
This term is supposed to represent the uu; = kM —
effect of small-scale (unresolved) motions axj
on large-scale (resolved) motions
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Why do models need a turbulence scheme?

: Validity of Kaimal spectrum

4 day synoptic

k
pos Turbulent peak

(~1min)
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Frequency, Hz
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No turbulent energy in the free atmosphere
doi:10.1088/1755-1315/211/1/012023
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Flux-Gradient Assumption (K-theory)

T u'w ) =2 K S
Flux-gradient assumption XZ a 7 ( ) Xz
turbulent eddy velocity
flux viscosity gradient
(shear)
_ 2
Eddy viscosity Km — (CSl) |S|
00 1/0u ow\ 10U
Flux-gradient assumption Tg; = Ko E Sxz = 2\ 9z + x| 20z
Eddy diffusivity Ky =K, Pr—1
N——
Prandtl

number
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The first order closure

The first order closure applied at large-scales: A side note: Higher-order closures (play with unknowns)

e uu,=uv'=0

SOC: 6 + 2 pressure + 1 TKE + 1 dissipation

ek, isscalar
ij i
ouy ou
uiu's =uw =ky—=ky—
s Mox; Moz om® oum® 9 (um?)
oo Iy 4 p@ 4 e
UU3z3 =V W =Ky—>—= Ky 3
dx 0z
3 TOC: 30 + 9 pressure + 1 TKE + 1 dissipation
(3) _ (2)
mije = (wime)

FOC: 2 moments + 1 TKE equation (optional) + 1 TKE

dissipation equation (optional) 3) (3) (3)
— I/
Mellor G. L., & Yamada T. (1982). Development of a turbulence closure amijk auim'ijk 0 (uimjkl) (3)
model for geophysical fluid problems. Reviews of Geophysics, 20(4), ot - - Ox: + 0 +P Te€

851-875. https://doi.org/10.1029/RG020i004p00851
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The surface layer

1/2
Let u, = (u’w’ + v’w’) / be the surface friction velocity, or the momentum flux at the surface

k du 2 L fth I
—| = u; aw of the wa
M1dz
ky <u,l = kzu, In the Prandtl layer, just by a dimensional analysis (no physics); k = 0.4 —the von
Karman constant, z — the height above surface
W2 it tratified f
= |—|—= n the non-stratified flow
Pu dz| u,
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(K02/K01_v5.05_DEF_noLK -30
run)
_35 L 1 1 1 1 | L L 1 ]
DOW n S(:a | i n m Od el C h a i n 20.12 2112 22,12 23.12 24.12 2512 26.12 27.12 28.12 29.12 30.12 31.12
[ 1]
g —8— QObservations
= FRAS
* Limited-area mesoscale model COSMO-CLM —E%—VS'O—_?EF
* Dynamic downscaling of ERAS reanalysis data (available at grid with 30 km grid spacing) 05_v5.0_
* Chain of nested domains with grid step 5, 2 and 1 km (K05, KO2 and KO01) KO5_v5.05_DEF
* Simulation period 20-30 December 2017 ——K02_v5.0_TN
* Computations at Lomonosov-2 supercomputer of ——K05_v5.05_DEF
Lomonosov Moscow State University —KO05_v5.05_DEF_nolLK
——K01_v5.05_DEF_nolLK




Turbulence Scheme in MUSC

96, 0 06y The parametrized form of the TKE equation is
— KH + FT
ot 0z 0z
OBk Kpys? — KyN? + 2Ky 2
or M T M Moz €
ou 0 7 ou g
ot 0z "~ 0z (E,)/2

€ = Cq

Comments: Fy; is a given external forcing; Fr is the external Ly

cooling or warming rates.
Ky = Ky = lyn Ex
If the turbulence scheme causes difficulties, one shall
look at eddy diffusivity coefficients The mixing length scales [, ,; absorbed all coefficients.
... and further at the mixing length scale

lM,H
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Energy-Flux — Balance scheme

DEx _ 9 0B _0U oV, Ex
Dt 9z Eaz %oz oy  Pre tr
2 2
DEp OE, E, B B __
=—K - - Ep=|=) Eg==|=| 02 = N—2g'2
Dt 9z E TP T P=\N) 70T 2\N CEp6

The relaxation (prognostic) equation for the dissipation time scale

dtr

— =tr(t) - tr(t — 8t) = min (0.2,2—2) (tre(t) — tr(t — 6t))

trg IS an equilibrium time scale, associated with the length scale | = t;g+/Ex, its diagnostic expression is given by

1 Ex\2 I
tTE = kz 1-—
JEx +CqQz\ T Ming
the Earth rotation set Co= 0.
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Energy-Flux — Balance scheme

The turbulence diffusion coefficients are given as
KM - ZCTAZEKtT

Ep

KH - ZCF 1 - Ce AZEK AZEKtT

In the MUSC realization, the anisotropy was kept constant, A, = 0.2.

A measure (energy-based) of the static stability is given by IT1 = ? = —fpif
k —Ry

where I1;, = 0.14 is its asymptotic limit.
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The Ekman layer — a link to the ABL depth

The plain boundary layer is unbounded, h « ku,x1/?

The environmental (Ekman) boundary layer is bounded, h « /kTM = /k,}u* = Cp %, cp = 0.65

The Ekman PBL depth is directly proportional to the surface turbulent flux, h o u,

0.3

ol'=1K/km
o I'=3 K/km
' =9 K/km

* Field data
— Present work
—-=Zilitinkevich et al. (2007)
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un = N/|f|
Stratification of free atmosphere

Conventionally neutral PBL. The fact that free
atmosphere impacts the PBL depth tells that surface flux
is not strictly related to the depth of the mixed layer and
can be enhanced without making the PBL deep.

Liu L., Gadde S. N., & Stevens R. J. A. M. (2020). Geostrophic drag law for
conventionally neutral atmospheric boundary layers revisited.
Quarterly Journal of the Royal Meteorological Society, qj.3949.
https://doi.org/10.1002/qj.3949

Zilitinkevich S., Esau I., & Baklanov A. (2007). Further comments on the
equilibrium height of neutral and stable planetary boundary layers.
Quarterly Journal of the Royal Meteorological Society, 133(622).
https://doi.org/10.1002/qj.27

"YSS research school" 23


https://doi.org/10.1002/qj.3949
https://doi.org/10.1002/qj.27

(a) Statically unstable: (b) Statically stable:

96/0z < 0. 36/0z > 0.
Stratification and stability ‘
w'e'
= (+)
& Turbulent kinetic energy
3© S [Shear Generation
S Rate (m2-s73)] 1
5 .3 EK:_(u.uT) w' =
0 d convect; (m=-s~) 2 (+)
Jorce Cliop 0.006
D .j:
Turbulent potential energy @
w'o
= ()| S——
E 1(9!3/)9 LAY = 0-0 \,,
— — | = 0
72 0, \ 0z
Turbulent dissipation N2> 0 : N2<0
|
$ 4 0.002 c:l) 0.002 0.004 0.006 E3/2 :
/_' ' B y=20 I T.S_bfk\y: TS;Ek\y
Dispersion Isotropy [Buoyant (m2-3—3} pweo I —a
Generation Rate] E 7 BWQ\ F 7
Static Stability P ; P
Pasquill-Gifford Turbulence Type I
Flow
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Temperature equation
(approaching to the temperature bias)

z div(Q,) 1. Monin-Obukhov similarity theory (MOST)

u. —_—
‘ox;  Ox;  Ox; | Ox . T
e Equilibrium conditions, Py 0

ow;Tr _ aw'Tr

oT (_ oT ouT' 0 6T> 1
—=— + + +
ot pcyh

e Assume PBL conditions, a = os * Arrive to flux-gradient relationship
l
__ T =
* Assume no lateral fluxes, t; — =0 dT .
0x; kr|—|=T,=w'T
* Apply to a bulk surface layer of the depth h dz
" T <F77 Let us define the Prandtl number (unknown!)
10° | d_T uz
kay dz| ™
Pr = = ==
I 10'r kT d_u T
. dz| ** ,
_krg 14 _ 1 U
10° ; kT - km M~ Pr kM Pr @|
e dz
Focus of almost all studies is on phenomenology of Pr(Ri)
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Climatology of the PBL

500 1000 1500

0 400 200 1200
PBL (meters) SHR [m]
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1.

Variable ABL: Climate effects

dT

CE:Q: as — (A+BT) + 5 + N(O,07)
Enhanced solar flux thermal flux  climate forcing  additive noise

max(0,sinwt) linearization ot (weather)

fluxes
(needed) Deeper PBL

_ _ hSBLN].OO m, Q <0
C=peph= {hCBL~1OhSBL~1OOO m,Q = 0
Damped and less

agile response Different cases:

1. “Fast” system, T < 1y, i.e., the system adopts to the forcing
2. “Slow” system , T > 1, i.e., the system integrates the forcing
3. Alternating system, incomplete adaptation and new equilibrium

PBL scheme could be asymptotically (in a
long relaxation run) correct — all bias is
accumulated in a few hours

Variable forcing correlated with variable PBL
leads to different model climatology

250 1 h = const

TIK]

h=H(t)

1000 4

500 1

O [W /m2]

27
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ABL as a factor of
Climate change

Temperature SD (K)
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