

Igor Esau

Atmospheric boundary layers: Processes, modelling and challenges

University in Tromsø – Norwegian Arctic University igor.ezau@uit.no

What is an Atmospheric Boundary Layer (ABL)?

- Source: <u>Atmospheric boundary layer Glossary of Meteorology (ametsoc.org)</u>
- ABL *also called* boundary layer, planetary boundary layer.
- The bottom **[turbulent]** layer of the <u>troposphere</u> that is in contact with the surface of the earth.
- It is often [always] turbulent and is capped by a <u>statically stable</u> layer of air or [potential] <u>temperature inversion</u>.
- The ABL depth (i.e., the <u>inversion</u> height) is variable in time and space, ranging from tens of meters in strongly statically stable situations, to several kilometers in convective conditions over deserts.
- During <u>fair</u> weather over land, the ABL has a marked <u>diurnal</u> cycle. During daytime, a <u>mixed layer</u> of vigorous <u>turbulence</u> grows in depth, capped by a statically stable <u>entrainment zone</u> of intermittent turbulence. Near <u>sunset</u>, turbulence decays, leaving a <u>residual layer</u> in place of the mixed layer. During nighttime, the bottom of the residual layer is transformed into a statically <u>stable boundary layer</u> by contact with the radiatively cooled surface. <u>Cumulus</u> and <u>stratocumulus</u> clouds can form within the top portion of a humid ABL, while <u>fog</u> can form at the bottom of a stable boundary layer. The bottom 10% of the ABL is called the <u>surface layer</u>.
- Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. 666 pp.

Key words:

- Turbulence
- Wind and Temperature (density) profiles
- Stratification/Stability
- Surface layer or a layer of constant fluxes
- Capping potential temperature inversion

Stull, R., 2017. Practical Meteorology: An Algebra-based Survey of Atmospheric Science., University of British Columbia.

ABL structure

Absolute temperature

Wind speed

ABL structure: An example of implications

ABL observed with an atmospheric lidar

Manninen, A.J., Marke, T., Tuononen, M., O'Connor, E.J., 2018. Atmospheric Boundary Layer Classification With Doppler Lidar. J. Geophys. Res. Atmos. 123, 8172–8189. https://doi.org/10.1029/2017JD028169

Time-height plots of atmospheric boundary layer

classification showing

- (a) connection with the surface (i.e., surface driven versus cloud driven) and
- (b) the turbulent mixing source, together with time-height plots of
- (c) wind direction and
- (d) wind speed on 9 March 2016 at Jülich, Germany.

The black lines on the two lower panels show altitude of a low-level jet (LLJ).

Turbulent mixing is the key dynamical process in the atmospheric boundary layer

In fluid dynamics, turbulence is a process characterized by chaotic changes in fluid motions.

Richard Feynman has described turbulence as the most important unsolved problem in classical physics.

$$Re = \frac{UL}{v} \gg O(10^5) \gg Re_{cr} = O(10^3)$$

The atmosphere and the ocean are always turbulent, but there are "strong" (in ABL/OML and in some other conditions) and "weak" turbulent regimes

Yoon, M., Hwang, J., Yang, J., Sung, H.J., 2020. Wall-attached structures of streamwise velocity fluctuations in an adverse-pressure-gradient turbulent boundary layer. J. Fluid Mech. 885, A12. https://doi.org/10.1017/jfm.2019.950

11/16/2021

"YSS research school"

Convective (unstably stratified) ABL

Chaotic process requires statistical approach

Fluctuations are chaotic but not completely random

- Not white noise
- Large, energic fluctuations are considerably more frequent than one may expect having a Gaussian process
 Temperature fluctuations significantly more skewed as compared to velocity
 fluctuations

Turbulence could be divided on

- a universal (Kolmogorov) part
- A non-universal (self-organized) part

Time series of the longitudinal velocity fluctuations, u(t), and their derivative, $\partial u(t)/\partial t$. Also shown is the time series of scalar fluctuations, $\theta(t)$, and their derivative, $\partial \theta(t)/\partial t$, in the same flow. Notice the higher intermittency in the scalar (bottom trace). $R_{\lambda} = 582$. Measurements by L. Mydlarski

Warhaft, Z., 2002. Turbulence in nature and in the laboratory. Proc. Natl. Acad. Sci. 99, 2481–2486. https://doi.org/10.1073/pnas.012580299

Self-organized turbulence in the PBL

Self-organized turbulence in the PBL

Figure 1 Open Cell Convection near the Azores (NASA MODIS Aqua Satellite – 24 January 2006 15:35 UTC - resolution 1 km; Image courtesy of MODIS Rapid Response Project at NASA/GSFC, [4])

	Table 2-2 Some typical parameters of closed cell convection (Atkinson and Zhang, 1996; Agee and	
62	Lomax, 1978)	
杜	Cell diameter	24-53 km
1	Cell height	1,3 - 2 km
8.	Cell aspect ratio (diameter/height)	3-28
	Tsea-Tair	1.7-5 °C
31	Low level wind shear (direction)	$< 7 \circ \mathrm{km}^{-1}$
A	Low level wind shear (speed)	$< 2 \text{ m s}^{-1} \text{ km}^{-1}$
	Cloudiness	$\sim 90 \%$
100		The second s

Figure 2 Closed Cell Convection near the Azores (NASA MODIS Terra Satellite – 12 April 2006 12:30 UTC - resolution 1 km; Image courtesy of MODIS Rapid Response Project at NASA/GSFC, [4])

Reynolds Decomposition: Rules

Large-eddy simulations

© by Rob Stoll

$$E(k) = c_k \epsilon^{2/3} k^{-5/3}$$

 $\frac{\|u_i\|}{\|x_i\|} = 0 \quad \text{Conservation of Mass}$ $\frac{\|u_i\|}{\|t\|} + \frac{\|u_i u_j\|}{\|x_j\|} = -\frac{1}{r} \frac{\|P\|}{\|x_i\|} + n \frac{\|^2 u_i\|}{\|x_j^2\|} + F_i \quad \text{Conservation of Momentum}$ $\frac{\|Q\|}{\|t\|} + \frac{\|u_i Q\|}{\|x_j\|} = n_q \frac{\|^2 Q}{\|x_j^2\|} + Q \quad \text{Conservation of scalar (temp, species, etc.)}$

"YSS research school"

Turbulence subgrid-scale closure and filtering

© by Rob Stoll

$$\widetilde{u_i u_j} = \overline{\left(\widetilde{u_i} + u_i'\right)\left(\widetilde{u_j} + u_j'\right)} \\= \widetilde{u_i u_j} + \widetilde{u_i u_j'} + \widetilde{u_j u_i'} + \widetilde{u_i' u_j'}$$

 $\widetilde{\tilde{u}_i \tilde{u}_j} = \left(\widetilde{\tilde{u}_i \tilde{u}_j} - \widetilde{u}_i \widetilde{\tilde{u}_j} \right) + \widetilde{u}_i \widetilde{\tilde{u}_j} \quad \text{-> known}$ $L_{ij} \text{- Leonard term (stress)}$ $C_{ij} = \widetilde{\tilde{u}_i u'_j} + \widetilde{\tilde{u}_j u'_i} \Rightarrow \text{ interaction between resolved and SFSs}$ $R_{ij} = \widetilde{u'_i u'_j} \Rightarrow \text{ SFS "Reynold's" stress} \quad \text{-> unknown}$

Required closure for the turbulent stress term

$$\tau_{ij} = L_{ij} + C_{ij} + R_{ij} = \widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j$$

$$\tau_{ij} - \frac{1}{3} \tau_{kk} \delta_{ij} = -2\nu_T \widetilde{S}_{ij} \quad \text{-> parametrization (J. Smagorinsky)}$$

"YSS research school"

Nature of turbulent fluxes

$$\frac{\partial u_i}{\partial t} = -\frac{\partial u_i u_j}{\partial x_j} - \frac{1}{\rho} \frac{\partial p^*}{\partial x_i} - \frac{\partial}{\partial x_j} k \frac{\partial u_i}{\partial x_j} + \cdots$$

Decompose on resolved and unresolved parts (Reynolds approach or Keller-Friedman series: $\overline{u'} = 0$, $\overline{\overline{u}u'} = 0$)

Why do models need a turbulence scheme?

Flux-Gradient Assumption (K-theory)

Flux-gradient assumption

$$\begin{aligned} \tau_{xz} &= \frac{\partial}{\partial z} \left(\overline{u'w'} \right) = 2 \underbrace{K_m}_{eddy} \underbrace{S_{xz}}_{velocity} \\ flux & velocity \\ (shear) \end{aligned}$$

Eddy viscosity

Flux-gradient assumption

Eddy diffusivity

$$K_{m} = (c_{S}l)^{2}|S|$$

$$\tau_{\theta z} = K_{\theta} \frac{\partial \theta}{\partial z}$$

$$K_{\theta} = K_{m} \Pr^{-1}$$

Prandth
number

 $S_{xz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \rightarrow \frac{1}{2} \frac{\partial U}{\partial z}$

The first order closure

The first order closure applied at large-scales:

- $\overline{u'_1u'_2} = \overline{u'v'} = 0$
- k_M is scalar

$$\overline{u'_{1}u'_{3}} = \overline{u'w'} = k_{M}\frac{\partial\overline{u_{1}}}{\partial x_{3}} = k_{M}\frac{\partial\overline{u}}{\partial z}$$
$$\overline{u'_{2}u'_{3}} = \overline{v'w'} = k_{M}\frac{\partial\overline{u_{2}}}{\partial x_{3}} = k_{M}\frac{\partial\overline{v}}{\partial z}$$

FOC: 2 moments + 1 TKE equation (optional) + 1 TKE dissipation equation (optional)

Mellor G. L., & Yamada T. (1982). Development of a turbulence closure model for geophysical fluid problems. *Reviews of Geophysics, 20*(4), 851–875. https://doi.org/10.1029/RG020i004p00851 A side note: Higher-order closures (play with unknowns)

SOC: 6 + 2 pressure + 1 TKE + 1 dissipation

$$\begin{split} m_{ij}^{(2)} &= \overline{u_i' u_j'} \\ \frac{\partial m_{ij}^{(2)}}{\partial t} &= -\left(\frac{\partial \overline{u_i} m_{ij}^{(2)}}{\partial x_j} + \frac{\partial \overline{\left(u_i' m_{jk}^{(2)}\right)}}{\partial x_j}\right) + P^{(2)} + \epsilon \end{split}$$

$$\begin{split} m_{ijk}^{(3)} &= \overline{\left(u_i' m_{jk}^{(2)}\right)} \\ \frac{\partial m_{ijk}^{(3)}}{\partial t} &= -\left(\frac{\partial \overline{u_i} m_{ijk}^{(3)}}{\partial x_j} + \frac{\partial \overline{\left(u_i' m_{jkl}^{(3)}\right)}}{\partial x_j}\right) + P^{(3)} + \epsilon \end{split}$$

The surface layer

Let $u_* = (\overline{u'w'} + \overline{v'w'})^{1/2}$ be the surface friction velocity, or the momentum flux at the surface

$$k_M \left| \frac{d \bar{u}}{d z} \right| = u_*^2$$
 Law of the wall

 $k_M \propto u_*L = kzu_*$ In the Prandtl layer, just by a dimensional analysis (no physics); $k \approx 0.4$ – the von Karman constant, z – the height above surface

$$\phi_M = \left| \frac{d\bar{u}}{dz} \right| \frac{kz}{u_*} = 1$$
 In the non-stratified flow

Only the simulations with new boundary layer physics, high spatial resolution and removed lakes **adequately reproduced the observed cold spell** (K02/K01_v5.05_DEF_noLK run)

Downscaling model chain

- Limited-area mesoscale model COSMO-CLM
- Dynamic downscaling of ERA5 reanalysis data (available at grid with 30 km grid spacing)
- Chain of nested domains with grid step 5, 2 and 1 km (K05, K02 and K01)
- Simulation period 20-30 December 2017
- Computations at Lomonosov-2 supercomputer of Lomonosov Moscow State University

Turbulence Scheme in MUSC

$$\frac{\partial \theta_V}{\partial t} = \frac{\partial}{\partial z} K_H \frac{\partial \theta_V}{\partial z} + F_T$$
$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial z} K_M \frac{\partial U}{\partial z} + F_U$$

Comments: F_U is a given external forcing; F_T is the external cooling or warming rates.

If the turbulence scheme causes difficulties, one shall look at eddy diffusivity coefficients ... and further at the mixing length scale

 $l_{M,H}$

The parametrized form of the TKE equation is

$$\frac{\partial E_k}{\partial t} = K_M S^2 - K_H N^2 + 2K_M \frac{\partial E_k}{\partial z} - \epsilon$$

$$\epsilon = c_d \frac{(E_k)^{3/2}}{l_M}$$

$$K_M = K_H = l_{M,H} \sqrt{E_k}$$

The mixing length scales $l_{M,H}$ absorbed all coefficients.

Energy-Flux – Balance scheme

$$\frac{DE_{K}}{Dt} = \frac{\partial}{\partial z}K_{E}\frac{\partial E_{K}}{\partial z} + \tau_{x}\frac{\partial U}{\partial z} + \tau_{y}\frac{\partial V}{\partial z} + \beta\tau_{\theta} - \frac{E_{K}}{t_{T}}$$

$$\frac{DE_{P}}{Dt} = \frac{\partial}{\partial z}K_{E}\frac{\partial E_{P}}{\partial z} - \beta\tau_{\theta} - \frac{E_{P}}{C_{P}t_{T}} \qquad E_{P} = \left(\frac{\beta}{N}\right)^{2}E_{\theta} = \frac{1}{2}\left(\frac{\beta}{N}\right)^{2}\overline{\theta'^{2}} = c_{Ep\theta}N^{-2}\overline{\theta'^{2}}$$

The relaxation (prognostic) equation for the dissipation time scale $\frac{dt_T}{dt} = t_T(t) - t_T(t - \delta t) = \min\left(0.2, \frac{\delta t}{t_{TE}}\right) \left(t_{TE}(t) - t_T(t - \delta t)\right)$

 t_{TE} is an equilibrium time scale, associated with the length scale $l = t_{TE}\sqrt{E_K}$, its diagnostic expression is given by

$$t_{TE} = kz \frac{1}{\sqrt{E_K} + C_\Omega \Omega z} \left(\frac{E_K}{\tau}\right)^{\frac{3}{2}} \left(1 - \frac{\Pi}{\Pi_{inf}}\right)$$

the Earth rotation set $C_{\Omega} = 0$.

11/16/2021

"YSS research school"

Energy-Flux – Balance scheme

The turbulence diffusion coefficients are given as

$$K_M = 2C_\tau A_z E_K t_T$$

$$K_H = 2C_F \left(1 - C_\theta \frac{E_P}{A_z E_K}\right) A_z E_K t_T$$

In the MUSC realization, the anisotropy was kept constant, $A_z = 0.2$.

A measure (energy-based) of the static stability is given by $\Pi = \frac{E_P}{E_k} = \frac{C_P R_f}{1 - R_f}$ where $\Pi_{inf} = 0.14$ is its asymptotic limit.

The Ekman layer – a link to the ABL depth

The plain boundary layer is unbounded, $h \propto k u_* x^{1/2}$

The environmental (Ekman) boundary layer is bounded, $h \propto \sqrt{\frac{k_M}{f}} = \sqrt{\frac{khu_*}{f}} = c_R \frac{u_*}{f}, c_R \approx 0.65$

The Ekman PBL depth is directly proportional to the surface turbulent flux, $h \propto u_{*}$

Conventionally neutral PBL. The fact that free atmosphere impacts the PBL depth tells that surface flux is not strictly related to the depth of the mixed layer and **can be enhanced without making the PBL deep**.

- Liu L., Gadde S. N., & Stevens R. J. A. M. (2020). Geostrophic drag law for conventionally neutral atmospheric boundary layers revisited. *Quarterly Journal of the Royal Meteorological Society*, qj.3949. <u>https://doi.org/10.1002/qj.3949</u>
- Zilitinkevich S., Esau I., & Baklanov A. (2007). Further comments on the equilibrium height of neutral and stable planetary boundary layers. *Quarterly Journal of the Royal Meteorological Society*, 133(622). <u>https://doi.org/10.1002/qj.27</u>

23

Stratification and stability

Turbulent kinetic energy

$$E_K = \frac{1}{2} (\boldsymbol{u} \cdot \boldsymbol{u}^T)$$

Turbulent potential energy

$$E_{\theta} = \frac{1}{2} (\theta' \theta') \frac{g}{\theta_0} \left(\frac{\partial \theta}{\partial z}\right)^{-1}$$

Turbulent dissipation

$$\gamma = C_{\gamma} \frac{E^{3/2}}{l}$$

 $\tau \cdot S \rightarrow$

Temperature equation (approaching to the temperature bias)

$$\frac{\partial T}{\partial t} = -\left(\overline{u_i}\frac{\partial T}{\partial x_i} + \frac{\partial \overline{u_i'T'}}{\partial x_i} + \frac{\partial}{\partial x_i}k_T\frac{\partial T}{\partial x_i}\right) + \frac{1}{\rho c_p h}\sum div(Q_k)$$

- Assume PBL conditions, $\frac{\partial \overline{u'_i T'}}{\partial x_i} = \frac{\partial \overline{w' T'}}{\partial z}$
- Assume no lateral fluxes, $\overline{u_i} \frac{\partial T}{\partial x_i} = 0$
- Apply to a bulk surface layer of the depth h

- 1. Monin-Obukhov similarity theory (MOST)
 - Equilibrium conditions, $\frac{dT}{dt} = 0$
 - Arrive to flux-gradient relationship

$$k_T \left| \frac{d\overline{T}}{dz} \right| = \mathbf{T}_* = \overline{w'T'}$$

Let us define the Prandtl number (unknown!)

$$Pr = \frac{k_M}{k_T} = \frac{\left|\frac{d\bar{T}}{dz}\right| u_*^2}{\left|\frac{d\bar{u}}{dz}\right| T_*}$$
$$k_T = \frac{k_T}{k_M} k_M = \frac{1}{Pr} k_M = \frac{1}{Pr} \frac{u_*^2}{\left|\frac{d\bar{u}}{dz}\right|}$$

Focus of almost all studies is on phenomenology of $\Pr(Ri)$

Climatology of the PBL

Variable ABL: Climate effects

- PBL scheme could be asymptotically (in a long relaxation run) correct – all bias is accumulated in a few hours
- 2. Variable forcing correlated with variable PBL leads to **different model climatology**

$$\frac{dT}{dt} = Q = \underbrace{aS_0}_{\substack{solar flux \\ max(0,sin\omega t)}} - \underbrace{(A + BT)}_{\substack{thermal flux \\ linearization}} + \underbrace{F}_{\substack{climate forcing \\ \propto t}} + \underbrace{N(0,\sigma_T)}_{additive noise \\ (weather)}$$
$$C = \rho c_p h = \begin{cases} h_{SBL} \sim 100 \ m, Q < 0 \\ h_{CBL} \sim 10h_{SBL} \sim 1000 \ m, Q \ge 0 \end{cases}$$

Different cases:

- 1. "Fast" system, $\tau < \tau_Q$, i.e., the system adopts to the forcing
- 2. "Slow" system , $\tau > \tau_Q$, i.e., the system integrates the forcing
- 3. Alternating system, incomplete adaptation and new equilibrium

"YSS research school"

ABL as a factor of Climate change

