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5-day forecast of geopotential height at 500 hP (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int
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5-day forecast of geopotential height at 500 hP (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int




4-day forecast of geopotential height at 500 hPa (contours) and temperature at 850 hPa

(colour shading)

Source: www,ecmwf.int

November 2021

Validity time 00 UTC, 9"



3-day forecast of geopotential height at 500 hPa (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int



2-day forecast of geopotential height at 500 hPa (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int
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1-day forecast of geopotential height at 500 hPa (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int



Analysis of geopotential height at 500 hPa (contours) and temperature at 850 hPa
(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int
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Analysis of geopotential height at 500 hPa (contours) and temperature at 850 hPa

(colour shading)
Validity time 00 UTC, 9" November 2021 Source: www.ecmwif.int




Evolution of forecast skill in global NWP
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Values greater than 60% - “Useful forecasts”

Values greater than 80% - “High degree of accuracy” ;
Nature 525 (3" September 2015)



Global NWP centres

500hPa geopotential
Anomaly correlation
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Global NWP centres

DWD :: Deutscher Wetterdienst (Germany)
CMC :: Canadian Meteorological Center
JMA :: Japan Meteorological Agency
UKMO :: United Kingdom Met Office
BoM :: Bureau of Meteorology (Australia)
KMA :: Korea Meteorological Administration
NCEP :: National Centers for Environmental
Prediction (USA)

ECMWEF :. European Centre for Medium-range Weather Forecasts
ERAS :: ECMWEF 5th-generation re-analysis

Global centres focus on medium-range forecasting (~3—10 days ahead)




Short-range NWP consortia: limited-area modelling

SRNWP Consortia in Europe
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Short-range NWP consortia: limited-area modelling
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ACCORD Strategy 2021-2025
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Greatest challenges in modern-day NWP

1) Timely forecast production with ever increasing resolution in
time and space

2) Initialization of model state close to observed current weather
everywhere on the globe

3) Realistic representation of the effect of unresolved physical
processes

4) Description of uncertainty in analysis and forecast
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High-Performance Computing facilitates time-critical
production

Forecast Runs (base Forecast step Forecast Dissemination
time) frequency schedule
00 UTC e 0to 90 by 1 e 5:45-->6:12

« 93 to 144 by 3 e 6:12 > 6:27

150to 240 by 6 e 6:27 -->6:55

06 UTC e 0to 90 by 1 e 11:45-->12:12
12 UTC e 0to 90 by 1 e 17:45-->18:12
« 93to 144 by 3 e 18:12 -->18:27
e 150t0 240 by 6 e 18:27 -->18:55
18 UTC * 0to 90 by 1 e 23:45-->00:12

Source: www,ecmwf.int



Key components of the ECMWF forecasting system

ECMWEF bases its operational medium-range forecast products
on version Cy47r3 (as of November 2021) of the Integrated
Forecasting System (IFS)

HRES: Atmospheric Model high resolution
— Global 10-day deterministic forecast in ~9 km horizontal grid

resolution

— Vertical discretization using 137 levels from surface up to
0.01 hPa

— Produced twice per day from 00 UTC and 12 UTC initial

times

ENS: Ensemble — Atmospheric Model
— 51-member ensemble of global 15-day forecasts
— ~18 km horizontal grid resolution and 137 levels in vertical

4DVAR: Four-dimensional data assimilation
— Global analysis based on variational data assimilation

Source: www.ecmwf.int

~6.3-10° grid points for global
coverage

450 second time steps in
forecast integration

— Production of 10-day forecast
involves 1920 time steps



Demand on high-performance computing
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Demand on high-performance computing
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Greatest challenges in modern-day NWP

1) Timely forecast production with ever increasing resolution in
time and space

2) Initialization of model state close to observed current
weather everywhere on the globe

3) Realistic representation of the effect of unresolved physical
processes

4) Description of uncertainty in analysis and forecast



“ ... starting from the observed
current weather ... “

ECMWF data coverage (used observations) - RADIOSONDE ECMWEF data coverage (used observations) - AIRCRAFT
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It's a huge challenge to observe global weather!

Source: www,ecmwf.int



“ ... starting from the observed
current weather ... “

ECMWF data coverage (used observations) - GEOSTATIONARY RADIANCES ECMWF data coverage (used observations) - MICROWAVE HUMIDITY SOUNDERS
2021110821 to 2021110903 2021110821 to 2021110903
Total number of obs = 161026 Total number of obs = 135978
® METEOSAT-8(22076) HIMAW ARI-8 (28669 METEOSAT-11 (24630) ¥ GOES-16{43502) @ MOAA-19 (28567) 4 METOP-A (8892) A METOP-B(25497) ¥ METOP-C (25669)
% GOES-17 (42148) ¢ FY-3C (18858) FY-3D (27495)

It's a huge challenge to observe global weather!

Source: www,ecmwf.int



Measurement from space: Advanced Technology
Microwave Sounder (ATMS)

Pressure [hPa]

ATMS measures upwelling radiation at
microwave frequencies near 54 and 183 GHz

Radiation measurement is used as an
observation of temperature and humidity (not
straightforward)

The measurement may be interfered by cloud,
rain, or snow

I ~Temperature sounding channels (54 GHz)

005
Temperature Jacobian [K K]

~ ~Humidity sounding channels (183 GHz)



Initialization of the NWP model to “observed
current weather”

In practice no amount of available observations comes close to the degrees
of freedom in NWP model state — so initializing to observed current weather is

practically impossible!

The problem is made worse by the fact that all observations are inherently
Inaccurate.

The solution is to build on Bayesian probability theory to develop and apply
methods of data assimilation: use observations to correct for errors in short-
range NWP forecast, and do this at frequent update intervals



Data assimilation: what it takes and what it gives?

e i X

Observations (with errors)

|

Creative people

Powerful computer

Analysis (with smaller errors)

Source: www.ecmwf.int/assets/elearning



Four-dimensional variational data assimilation (4D-Var)

T~

Corrected
forecast

NN

Previous
forecast

I T I >

3 UTC 6 UTC 9 UTC 12 UTC 15 UTC Time
€ r
Assimilation window

—Use latest observations to update the NWP model trajectory
—Produce a dynamically-justified analysis that is consistent with all
observations across the time range of the assimilation window



Four-dimensional variational data assimilation (4D-Var)

Find the maximum-likelihood estimate for the atmospheric model state x
by minimizing the cost function J(x):

J(x)=(x—xs) B™ (x—x5)+(y—H[x])' R™ (y —H[x])

where
X, Is a short-range model forecast (=background field),

y Is a vector consisting of meteorological observations,

H[x] is an observation operator that transforms model state x into the
space of observations (including model integration in time),

B is the background error covariance, and

R is the observation error covariance
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Four-dimensional variational data assimilation (4D-Var)

Find the maximum-likelihood estimate for the atmospheric model state x
by minimizing the cost function J(x):

J(x)=(x=xs)" B™ (x—x3)+(y—H[x])’ R™ (y —H[x])

where notable challenges are involved with
(1) identifying the best possible composition of y (i.e. choosing
observations)
(2) specification of H[x], B, and R,
(3) computing inverses of B and R
(4) finding the minimum of J(x)



Greatest challenges in modern-day NWP

1) Timely forecast production with ever increasing resolution in
time and space

2) Initialization of model state close to observed current weather
everywhere on the globe

3) Realistic representation of the effect of unresolved
physical processes

4) Description of uncertainty in analysis and forecast



ECMWF model dynamical equations (1/2)
The momentum equations ED

<
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where a is the radius of the earth, 7 is the 7)-coordinate vertical velocity (1) =dn/dt), ¢ is geopotential, R,y
Is the gas constant for dry air, and 7T\ is the virtual temperature defined by

T =T 4 B/ Ry )T = ¥ il
k

where 1" is temperature, Ryap Is the gas constant for water vapour, g is specific humidity and g, denotes other
thermodynamically active moist species namely cloud liquid water, ice, rain, snow. F;; and Py represent the
contributions of the parameterised physical processes, while A7 and Ky~ are the horizontal diffusion terms.

Documentation of the Integrated Forecasting System, www.ecmwf.int



ECMWF model dynamical equations (2/2)
<Ee thermodynamic equaticD

aT 1 aT aT oT kT yw .
- U +V 0— 7 — - =P K 2.3
Ot  acos? 9{ ax g } T o (1+0-Dgp T 29

where £ = Rary/cp,,, (with ¢p,,. the specific heat of dry air at constant pressure), w is the pressure-coordinate
vertical velocity (w=dp/dt), and 6 =cp,.,/cp,,, (With ¢, the specific heat of water vapour at constant

pressure).
< The moisture equatioD
aq 1 dq dq dq
— + ——— U—+V cos0— =P+ K 2.4
9t T acos2 6 { ax Ve (59} T ”c); T (24)

In (2.2) and (2.3), Pr and P, represent the contributions of the parameterised physical processes, while Kt
and K, are the horizontal diffusion terms.

<ﬁcontinuity equa®
T o dp o (. 0p

dt(ap>+v-(v d>+—(- d_n) 0 (2.5)

where V is the horizontal gradient operator in spherical coordinates and vy = (u, v) is the horizontal wind.

Documentation of the Integrated Forecasting System, www.ecmwf.int



Unresolved processes represented via physical parameterizations

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Unresolved processes represented via physical parameterizations

Cloud physics at droplet

particle scale:

—Heating & cooling

—Drying & moistening

—Tendencies of prognostic
cloud variables

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Unresolved processes represented via physical parameterizations

Radiation
—Short-wave radiation
from the Sun and how it

\ 4
ﬁr reflects off from air

molecules, cloud

droplets and surface
—Long-wave radiation

from the surface and air

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Unresolved processes represented via physical parameterizations

Sub-grid scale turbulence

—Vertical exchange of heat,
momentum, moisture

—Coupling with surface through
latent and sensible heat fluxes

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Unresolved processes represented via physical parameterizations

Non-orographic gravity
wave drag generated by
—Deep convection
—Frontal disturbances
—Wind shear

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Unresolved processes represented via physical parameterizations

Sub-grid scale orographic

drag

—Parameterized as a sink of
momentum

Ocean model Surface model

Source: www.ecmwf.int/assets/elearning



Temperature tendencies associated with some physical processes

Radiation is a rather uniform field of a few K/day covering the entire troposphere. Boundary layer diffusion is
concentrated near the surface, and Convection has its maximum in the mid-troposphere of the tropics.

Unit: 0.1K Unit: 0.1K Unit: 0.1K
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Source: www.ecmwif.int/assets/elearning



High show albedo in forest Low show albedo in forest

Day+5 850 hPa T-error March 1996 -sDay+58?0 hPaT-en'otMa:m 19973
3 A 1 3 E

Source: www.ecmwf.int/assets/elearning



Greatest challenges in modern-day NWP

1) Timely forecast production with ever increasing resolution in
time and space

2) Initialization of model state close to observed current weather
everywhere on the globe

3) Realistic representation of the effect of unresolved physical
processes

4) Description of uncertainty in analysis and forecast



Variation of predictability in planetary scale

500hPa geopotential DWD

Anomaly correlation CMC  seessseesse ERA5

NHem Extratropics (at 20.0 to 90.0, lon -180.0 to 180.0) JMA BoM
UKMO KMA
ECMWF s NCEP

6.5

day

4 T
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020



Variation of predictability in planetary scale

500hPa geopotential DWD
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Variation of predictability in planetary scale

500hPa geopotential DWD

Anomaly correlation CMC  eesesesseens ERA5

NHem Extratropics (at 20.0 to 90.0, lon -180.0 to 180.0) JMA BoM
UKMO KMA
ECMWF NCEP
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A case of low predictability in local scale
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Two NWP models’ predictions of 2-meter temperature
In the afternoon of the next day

Twitter / @MattiHuu_YLE 9" January 2016



Enabling probabilistic forecasts by the method of perturbed
ensembles

Initial condition
uncertainty

2 5 15407085

Probability of
precipitation (%)

Forecast /Y

uncertainty

Nature 525 (3" September 2015)



Ensemble analysis and forecast cycle

A
Ensemble analysis Ensemble forecast
AD-Var trajectories — /,/ i
_ ' — First guesses
m\ — /’/
L
— == =
A ’\
== -—_/ P
Observation 2 Observation
| | | | | >
09:00 12:00 15:00 18:00 21:00 Time (uTc)

Assimilation window

Forecast
Nature 525 (3" September 2015)



Ensemble spread vs. skill

Spread , RMSE [m/s]

= _— Root-mean-square
of forecast error

—=Forecast spread
within the ensemble

i i Ml el il Ml el Wil Dl el Moot Tals il et Ml |
24 48 72 96 120 144 168 192 216 240 264 288 318 336 360
Lead Time (hours)

Haméléainen et al., Mon. Wea. Rev. 148, 2020



Ensemble spread vs. skill

\

Spread , RMSE [m/s]
no
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—Forecast spread
within the ensemble
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Realistic description of uncertainty would imply that spread ~ skill



Greatest challenges in modern-day NWP

1) Timely forecast production with ever increasing resolution in
time and space

2) Initialization of model state close to observed current weather
everywhere on the globe

3) Realistic representation of the effect of unresolved physical
processes

4) Description of uncertainty in analysis and forecast
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